Matplotlib介绍 Matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形。 Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包。 Matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。 您只需几行代码就可以生成图表、直方图、功率谱、条形图、误差图、散点图等。 更多的示例,请参见基础绘图例子和示例陈列馆。 为了简单绘图,该 pyplot 模块提供了类似于MATLAB的界面,尤其是与IPython结合使用时。 对于高级用户,您可以通过面向对象的界面或MATLAB用户熟悉的一组功能来完全控制线型,字体属性,轴属性等。 安装 访问Matplotlib安装说明。 关于Python Matplotlib的用法总结请参考博文:https://matplotlib.org.cn/intro/ 下面是部分例题以便更好的理解Matplotlib 简单绘图题(Matplotlib)绘制以下两个函数的图像1、设定一个你喜欢 ...
我为什么要用NumPy? 对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多; NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的; NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多 当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。 关于Python Numpy矩阵的用法总结请参考博文:https://www.cnblogs.com/wj-1314/p/10244807.html 什么是NumPy?(基础篇)NumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词来源于两个单词– Numerical 和Python 。NumPy提供了大量的库函数和操作,可以帮助程序员轻松地进行 ...
Python数据清洗什么是数据清洗数据清洗(data cleaning)是从记录集、数据库表或数据库中检测和纠正(或删除)损坏或不准确的记录的过程,是指识别数据的不完整、不正确、不准确或不相关部分,然后替换、修改、或删除脏数据或粗数据。数据清洗可以与数据加工工具交互执行,也可以通过脚本进行批处理。 清洗后,一个数据集应该与系统中其他类似的数据集保持一致。 检测到或删除的不一致可能最初是由用户输入错误、传输或存储中的损坏或不同存储中类似实体的不同数据字典定义引起的。 数据清理与数据确认(data validation)的不同之处在于,数据确认几乎总是意味着数据在输入时被系统拒绝,并在输入时执行,而不是执行于批量数据。 数据清洗不仅仅更正错误,同样加强来自各个单独信息系统不同数据间的一致性。专门的数据清洗软件能够自动检测数据文件,更正错误数据,并用全企业一致的格式集成数据。 info: Wiki 数据清洗流程数据读写导入所需的库import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seab ...
Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub. Quick StartCreate a new post$ hexo new "My New Post" More info: Writing Run server$ hexo server More info: Server Generate static files$ hexo generate More info: Generating Deploy to remote sites$ hexo deploy More info: Deployment